

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : COMPILER DESIGN (20CS0516)

Course & Branch: B.Tech – CSE,CSIT

Year & Sem: II/I Regulation: R20

UNIT –I INTRODUCTION AND LEXICAL ANALYSIS

1	a	What do you understand by language processor?	[L2][CO1]	[2M]
	b	Describe about different language processors used in compiler design	[L2][CO1]	[4M]
	c	Give the differences between compiler and interpreter.	[L4][CO1]	[6M]
2	a	Define compiler.	[L1][CO1]	[2M]
	b	Analyse the process of compilation while designing a compiler.	[L4][CO2]	[10M]
3	a	List all the phases of compiler	[L1][CO2]	[2M]
	b	Give the neat diagram of phase of a compiler	[L2][CO2]	[4M]
	c	Explain each phase of a compiler.	[L2][CO2]	[6M]
4		Design the compiler by using the source program position=intial+rate*60.	[L6][CO3]	[12M]
5	a	Analyze the reasons for separating the lexical analysis and syntax analysis.	[L4][CO2]	[4M]
	b	Illustrate the steps involved in designing the compiler by using the source program $a=b+c*10$.	[L3][CO3]	[8M]
6	a	Describe Bootstrapping	[L2][CO1]	[8M]
	b	Explain the different applications of compiler technology	[L2][CO1]	[4M]
7	a	Discuss the Compiler construction Tools	[L2][CO3]	[6M]
	a	Differentiate tokens, patterns, and lexeme.	[L4][CO1]	[6M]
8	a	Explain in detail about the role of lexical analyzer in Compiler Design.	[L2][CO1]	[6M]
	b	Write about input buffering?	[L3][CO1]	[6M]
9		Discriminate the following terms	[L5][CO1]	[12M]
		a) Specification of Tokens b) Recognition of Tokens		

Course Couci 20050010	Course	Code:	20CS0516
------------------------------	--------	-------	----------

10	a	What is LEX	[L2][CO3]	[2M]
	b	Explain the working of a LEX Tool	[L2][CO3]	[6M]
	c	Give the structure of LEX program	[L2][CO3]	[4M]

1	a	Explain the role of parser.	[L2][CO1]	[4M]
	b	Define Context Free Grammar with example.	[L1][CO1]	[4M]
	c	Compare left most and right most derivations with examples	[L4][CO1]	[4M]
2	a	Define parse tree.	[L1][CO2]	[2M]
	b	Construct Leftmost and Rightmost derivation and parse tree for the string $3*2+5$ from the given grammar.	[L6][CO2]	[10M]
		Also check it's ambiguity for Set of alphabets $\sum = \{0,, 9, +, *, (,)\}$		
		$E \rightarrow I$		
		$E \rightarrow E + E$		
		$E \rightarrow E * E$ $E \rightarrow (E)$		
		$\mathbf{E} \rightarrow (\mathbf{E})$ $\mathbf{I} \rightarrow \mathbf{e} \mid 0 \mid 1 \mid = \mid 9$		
2			[1,1][(0,1]]	
3	a	Define Ambiguity.		[2M]
	b	Interpret how to eliminate ambiguity for the given Ambiguous Grammar.	[L3][CO1]	[10M]
4	a	What is left recursion? Describe the procedure of eliminating Left recursion.	[L5][CO1]	[4M]
	b	Eliminate left recursion for the following grammar		[4 M]
		$E \rightarrow E+T/T$ $T \rightarrow T*F/F$ $F \rightarrow (E)/id$		
	c	Show what you understand by Left factoring. Perform left factor for the grammar	[L2][CO1]	[4M]
		$A \rightarrow abB/aB/cdg/cdeB/cdfB$		
5	a	List the types of Parsers available	[L1][CO2]	[4M]
	b	Design the recursive decent parser for the following grammar $E \rightarrow E+T/T$ $T \rightarrow T^*F/F$ $F \rightarrow (E)/id$	[L6][CO3]	[8M]
6	a	What is meant by Non-recursive predictive parsing	[L2][CO3]	[2M]
	h	Illustrate the rules to be followed in finding the FIRST and FOLLOW	[L3][C01]	[6M]
	D	inustrate the rules to be followed in finding the FIRST and FOLLOW.		
				F 4 N 4T 1
	c	Find FIRST and FOLLOW for the following grammar? $E \rightarrow E + T/T$	[L3][CO2]	[4M]
	c	Find FIRST and FOLLOW for the following grammar? $E \rightarrow E+T/T$ $T \rightarrow T*F/F$	[L3][CO2]	[4M]

[L6][CO3] **[12M]**

7 Consider the grammar $S \rightarrow AB \mid ABad$

A→d E→b D→b∣ε $B \rightarrow c$

Consider the grammar $E \rightarrow TE'$

Construct the predictive parse table and check whether the given grammar is LL(1) or not.

8

[L4][CO2] **[12M]** $E' \rightarrow +TE' \mid -TE' \mid \varepsilon$ $T' \rightarrow *FT' \mid /FT' \mid \varepsilon$

Calculate FIRST and FOLLOW for the above grammar and

 $G' \rightarrow F / \varepsilon$ $G \rightarrow (E) / id$

 $T \rightarrow FT'$

F→GG'

Construct LL(1) Table for the above grammar.

9 Consider the grammar [L6][CO3] **[12M]** $E \rightarrow E + T/T$, $T \rightarrow T^*F/F$, $F \rightarrow (E) | id$ Design predictive parsing table and check the given grammar is LL(1) or not? 10 Discuss the types of errors. [L2][CO2] **[6M]** a Explain Error recovery in predictive parsing with an Example. b [L2][CO2] **[6M]**

UNIT –III BOTTOM UP PARSING AND SEMANTIC ANALYSIS

1	a	Explain about handle pruning	[L2][CO1]	[6M]
	b	Summarize about LR parsing	[L2][CO1]	[6M]
2	a	Describe bottom up parsing	[L1][CO2]	[4M]
	b	Differences between SLR, CLR, LALR parsers	[L4][CO2]	[8M]
3		Prepare Shift Reduce Parsing for the input string using the grammar $S \rightarrow (L) a$ $L \rightarrow L, S S$ a. $(a,(a,a))$ b. (a,a)	[L6][CO3]	[12M]
4	a	Define augmented grammar.	[L1][CO2]	[2M]
	b	Construct the LR(0) items for the following Grammar $S \rightarrow L=R / R$ $L \rightarrow *R / id$ $R \rightarrow L$	[L6][CO3]	[10M]
5		Construct SLR Parser for the following grammar $E \rightarrow E+T / T$ $T \rightarrow TF / F$ $F \rightarrow F^* / a / b$	[L6][CO3]	[12M]
6		Construct CLR Parsing table for the given grammar S→CC C→aC/d	[L6][CO3]	[12M]
7		Design the LALR parser for the following Grammar $S \rightarrow AA$ $A \rightarrow aA$ $A \rightarrow b$	[L6][CO3]	[12M]
8	a	What is YACC parser?	[L1][CO3]	[2M]
	b	Explain in detail the processing procedure of YACC Parser generator tool.	[L2][CO3]	[6M]
	c	How YACC will resolve the parsing action conflicts and the error recovery.	[L2][CO3]	[4 M]
9	a	Explain syntax directed definition with example	[L2][CO2]	[6M]
	b	Define a syntax-directed translation and explain with example.	[L2][CO2]	[6M]
10	a	Give the evaluation order of SDD with an example.	[L5][CO2]	[6M]
	b	Discuss Type Checking with suitable examples.	[L2][CO4]	[6M]

UNIT –IV

INTERMEDIATE CODE GENERATION AND RUN TIME ENVIRONMENT

1	a	What do you understand by Intermediate Code	[L2][CO5]	[2M]
	b	Analyse different types of Intermediate Code with an example.	[L4][CO5]	[10M]
2	a	List and define various representation of Three Address Codes	[L1][CO5]	[4M]
	b	Explain representation of Three Address Codes with suitable Examples	[L2][CO5]	[8M]
3		Produce quadruple, triples and indirect triples for following expression: (x + y) * (y + z) + (x + y + z)	[L6][CO5]	[12M]
4	a	Describe scope and life time of variable.	[L2][CO4]	[2M]
	b	Illustrate Control Flow Statements.	[L3][CO4]	[10M]
5	a	Justify the need for Storage Organization.	[L6][CO4]	[4M]
	b	Describe the Storage Organization with simple examples.	[L2][CO4]	[8M]
6	a	List out the properties of memory management	[L1][CO4]	[4 M]
	b	Discuss Storage allocation strategies with suitable example	[L2][CO4]	[8M]
7		Evaluate the following terms	[L5][CO4]	[12M]
		i. Stack allocation		
		ii. Static allocation		
		iii. heap allocation		
8	a	Define Activation Record.	[L1][CO5]	[2M]
	b	Sketch the format of Activation Record in stack allocation and explain each field in it.	[L3][CO5]	[10M]
9	a	Discuss about symbol table entries.	[L2][CO4]	[6M]
	b	Describe the various operations on symbol table.	[L2][CO4]	[6M]
10	a	Define Symbol table.	[L1][CO4]	[2M]
	b	Explain different types of Data structure used for symbol table.	[L2][CO4]	[10M]

UNIT –V

CODE OPTIMIZATION AND CODE GENERATION

1		Interpret the principles of optimization techniques to be considered during code generation.	[L3][CO5]	[12M]
2	a	Discuss about function preserving transformations.	[L2][CO6]	[6M]
	b	Describe about loop optimization technique.	[L2][CO5]	[6M]
3		Explain the followingi) Basic blocksii) Flow Graphs	[L3][CO6]	[12M]
4	a	List the optimization techniques of basic blocks	[L1][CO6]	[4M]
	b	Analyse different types of optimization techniques of basic blocks	[L4][CO6]	[8M]
5	a	Create the DAG for following statement. a+b*c+d+b*c	[L6][CO6]	[6M]
	b	Construct the DAG for the following basic blocks 1. $t1:=4*i$ 2. $t2:=a[t1]$ 3. $t3:=4*i$ 4. $t4:=b[t3]$ 5. $t5:=t2*t4$ 6. $t6:=prod+t5$ 7. $prod:=t6$ 8. $t7:=i+1$ 9. $i:=t7$ if i<=20 goto 1	[L6][CO6]	[6M]
6	a	List out the properties of global data flow analysis and explain it.	[L2][CO6]	[6M]
	b	Discuss about machine dependent optimization	[L2][CO5]	[6M]
7		Explain the peephole optimization Technique with examples.	[L2][CO5]	[12M]
8	a	List all the issues in the design of a code generator	[L2][CO6]	[4M]
	b	Explain the issues to be handled when code generator is designed.	[L2][CO6]	[8M]
9	a	Analyse the different forms in target program.	[L4][CO6]	[6M]
	b	Explain the target machine in code generator.	[L2][CO6]	[6M]
10	a	Analyze Simple code generator	[L4][CO6]	[6M]
	b	Evaluate Register allocation and register assignment techniques.	[L5][CO6]	[6M]

Prepared by: Dr. R.M Mallika, Mr.P.Krishnamoorthy, Mrs. Viswa sahithya, CSE, SIETK